If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+8=17
We move all terms to the left:
n^2+8-(17)=0
We add all the numbers together, and all the variables
n^2-9=0
a = 1; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·1·(-9)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*1}=\frac{-6}{2} =-3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*1}=\frac{6}{2} =3 $
| 6b^2+11=0 | | (y+2)(y-3)=(y-4)(y-2)+(y-4)(y+2) | | 4(y+1)=12y | | (5+d)÷-2=14 | | 0=y^2-7y+6 | | -9-n=-9-6n | | -3(x-6)=8-2x | | 5k^2+2=12k | | 19=2-13k | | 8(8+7x-2x=5(4x+6) | | 5x-7=50x+29 | | 2x^2-119=3x | | -36x^2+48x-12=0 | | 4c+8c=40 | | 2-3(4-x)=2x+5 | | 7x^2+21x+252=0 | | 5x-4=x+9 | | 8^x=1024 | | y-(-6)=-2 | | -3+2x=65 | | 3x2-18x+6=0 | | 3x2-12x=0 | | -3(n–11)=-9 | | X^2+2x-0.2=0 | | 2=d4–2 | | 8+7r=7+6r | | -12=-3t+6 | | x=2+2x4-6 | | 2^(5x+2)=6^(x) | | X^=6y | | 2(x-3)=x-7 | | 4.67y+2=14 |